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Dihedral Analogy
Modular curve towers for a prime p are to MTs

for p as the dihedral group Dp is to all p-perfect

finite groups. For p-perfect G, p′ conjugacy classes

C = {C1, . . . ,Cr}, have string of tower levels:

(TS) · · · → Hin,rd
k+1 → H in,rd

k → · · · → P
1
j \{∞}def= Uj.

With r = 4, use these inputs for conclusions:

1. Frattini Principles, FP1 and FP2.
2. Notions of j-line covers, Riemann-Hurwitz,

reduced Hurwitz spaces.
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Known MT Properties for r = 4
• (Proven) P1

j covers: All levels are curves, moduli

spaces covering the j-line P1
j ramified at three (j =

0, 1,∞) points, and upper half plane quotients by

a finite index subgroup of PSL2(Z).

• (Nearly Proven) Main Conj (K number field): Let

(TS) · · · → H̄′
k+1 → H̄ ′

k → · · · → P
1
j

be a projective sequence of (compactified)

components on (TS) over K (a PSCK). Then,

excluding cusps , level k >> 0 has no K points.
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Part I. Types of Cusps on curve components

AbsoluteNielsen classes Ni(Gk,C)abs :

{ggg = (g1, . . . , g4) ∈ C mod NSn(Gk)}

(for inner classes mod Gk) with

• Cond1 – Generation: 〈g1, g2, g3, g4〉 = G0;
• Cond2 – Product-one: g1g2g3g4 = 1.

Twist action of H4 = 〈q1, q2, q3〉 generators on

ggg ∈ Ni(Gk,C)abs. Ex.: q2 : ggg �→ (g1, g2g3g
−1
2 , g2, g4).

Cusps: Cu4
def= 〈q1q

−1
3 , (q1q2q3)2, q2〉 orbits.

Let Q′′ = 〈q1q
−1
3 , (q1q2q3)2〉.
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Why M̄4
def= H4/Q′′ is PSL2(Z)!

• q2 �→ γ∞;
• q1q2q3 (shift) �→ γ1 (order 2).
• q1q2 �→ γ0 has order 3, from braid relation

q1q2q1 = q2q1q2 mod Cu4 and Hurwitz relation

1 = q1q2q3q3q2q1:

= q1q2q1q1q2q1 = q1q2q1q2q1q2 = (q1q2)3.
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Example of computing component genera

From a PSCK, in (CS), what to compute:

• Nature of cusps and their widths (length of Cu4

mod Q′′ orbits).
• How they fall in M̄4 orbits and of what genera

(Riemann-Hurwitz).
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Modular curves X0(pk+1) [Fr05d, Talk #1]

Use b ⇔
( −1 b

0 1

)
∈ Dpk+1. So,

ggg ∈ Nik ⇔ (b1, . . . , b4) ∈ (Z/pk+1)4.

Conjugate by power of
( 1 1

0 1

)
to assume

b1 = 0 and b2 − b3 + b4 = 0.
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Normalizing: Have b2 − b3 = apu u ≥ 0,

a ∈ Z/pk+1−u and (a, p) = 1.

For Niabs, conjugate by
( a−1 0

0 1

)
so a = 1.

Allows further conjugation by

Hu = {α = 1+bpk+1−u ∈ Z/pk+1 mod pu, b ∈ Z/pu}.

Take c = b2, b3 = c − pu (u is a parameter).
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Dihedral group cusp computing cont.

Compute : (ggg)q�
2 ⇔ (b2, b3) = (c+�pu, c+((�−1)pu).

For u = 0: (b2, b3) = (c, c − 1) has q2 orbit of width

pk+1 containing ggg = gggH−M = (0, 0, 1, 1) (unique

Harbater-Mumford rep.).

Otherwise, 〈ggg〉 = Dpk+1 requires (c, p) = 1.

Conjugate by Hu to assume c ∈ Z/pk+1−u is

p′, u > 0: Width = |residues mod pk+1−u differing

by multiplies of pu|.
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Conclude: ϕ(pk+1−u) Nielsen class elements fall in

Cu4 orbits of width pk+1−2u (resp. 1) if k+1−2u ≥ 0
(resp. k + 1 − 2u < 0).

Other extreme, u = k + 1: (b2, b3) = (1, 1), the

shift of an H-M rep. (orbit width 1).
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Part II: Compare modular curve cusps with cusp

types on all MT levels [Fr05c, §3.2]

When r = 4, MT levels ( k ≥ 0) are upper half-

plane quotients covering the classical j-line. Rarely

modular curves.

With r = 4, ggg ∈ Ni(G,C)in, denote:

〈g2, g3〉 = H2,3(ggg) and 〈g1, g4〉 = H1,4(ggg).
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For u �= k + 1, all ggg define p cusps: p|ord(g2g3),
and p divides all inner space cusp widths.

For u = k + 1: (0, c, c, 0) = (b′′1, b
′′
2, b

′′
3, b

′′
4) (shift

of H-M case) has inner space cusp width (= 1)

prime to p. Generalizing property, (ggg)Cu4 is a g-p′

cusp:H2,3(ggg) and H1,4(ggg) are p′ groups:

Finally: o(nly)-p′ is the phrase for those cusps

neither p nor g-p′. Modular curves have none.
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Apply R-H to MT components

Ni′ is a M̄4 orbit on a reduced Nielsen class

Ni(G,C)abs/Q′′ (or Ni(G,C)in/Q′′). Denote action

of (γ0, γ1, γ∞) (p. 9) on Ni′ by (γ′
0, γ

′
1, γ

′
∞): Branch

cycles for a cover H̄′ → P1
j,

R-H gives genus, gH̄′:

2(deg(H̄′/P
1
j)+g′−1)=ind(γ′

0) + ind(γ′
1) + ind(γ′

∞).
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To compute genera of components in a MT
answer these questions

• What are the components H̄′
k of H̄k

(M̄4 orbits Ni′k on Nirdk )?
• What are the cusp widths (ramification orders over

∞; orbit lengths of γ′
∞ on Ni′k)?

• What points ramify in each component over elliptic

points j = 0 or 1; length 3 (resp. 2) orbits of γ′
0

(resp. γ′
1) on Ni′k?
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Part III. Where is the Main Conjecture with r = 4?

Let B′ = {H′
k}∞k=0 be an infinite component

branch. Possible Main Conj. contradictions:

1. gH̄′
k

= 0 for all 0 ≤ k < ∞
(B′ has genus 0; gB′ consists of 0’s); or

2. For k large, gH̄′
k

= 1
(B′ has genus 1; almost all of gB′ is 1’s).
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Reduction to the case the center of G is p′: Then,

FP1 =⇒ Every point at level k + 1 over a p cusp

at level k is ramified (of order p).

Example use: From R-H, for k >> 0, (2) implies

H̄′
k+1 → H̄′

k doesn’t ramify. So, FP1 says:

For no k does H̄′
k have a p cusp.
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Possible exceptional cases! [Fr05c, §5]

Assume ppp′k ∈ H̄′
k is a p cusp (some k). Denote:

deg(H̄′
k+1/H̄′

k) = νk and |ppp′k+1 ∈H̄′
k+1 overppp′k| =uk.

Theorem 1. The Main Conj. is true unless for
k >> 0, νk = p, uk = 1 and H̄′

k+1/H̄′
k is equivalent

(as a cover over K) to either:
1. (PolyM) a degree p polynomial map; or

2. (RediM) a degree p rational function ramified
precisely over two K conjugate points.
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Corollary 2. If neither (PolyM) nor (RediM) hold
for the component branch B′, then high levels of
B′ have no K points.

For B′ with full elliptic ramification (includes
when B′ has fine reduced moduli) for k >> 0, the
Main Conj. holds unless (RediM) holds.
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Part IV. What happens in real cases!

• Main point to finish Main Conjecture for r = 4:

Find p cusps at high levels.

• If the lim sup of deg(H̄′
k+1/H̄′

k) is not p, one p

cusp guarantees the p cusp count (at level k) is

unbounded as k �→ ∞.
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The case (A5,C34, p = 2) (four 3-cycles):

• Level 0: H(A5,C34)in,rd has one component, and

no p (=2) cusps.
• Apply lift invariant for Spin5 → A5 (App2):

Shows all level 1 comps. have p (= 2) cusps

[BFr02,Cor. 8.3] (Fr-Se formula).

• Level 1 [BFr02, Prop. 9.14]: Two components

(M̄4 orbits, Ni1,±), distinguished by embedding

G1(A5) ≤ A40 giving sSpin40
(ggg) = ±1 depending

on ggg ∈ Ni1,±.
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On compactification H̄+ of H+(G1(A5),C34)in,rd:

• Contains all H-M cusps (FP2 =⇒ 2G̃ is a limit

group for a comp. branch over it).

• Has genus 12 and degree 16 over the unique

component of H̄(A5,C34)in,rd.

• Has all the real (and so all the Q) points at level 1

[BFr02, §8.6]. On its compactification H̄+, H̄+(R)
is connected. All except the shift of the H-M cusps

are 2 cusps.
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On compactification H̄− of H−(G1(A5),C34)in,rd:

• Has genus 9, but no real points.

• Because of the lifting invariant, nothing above it

at level 2: 2G̃(A5) (the whole 2-Frattini cover of

A5) is not a limit group.
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Higher (A5,C34, p = 2) levels: modular curve-like

cusp properties

Let {H′
k}∞k=0 be an H-M comp. branch (FP2).

Proposition 3.On all H̄′
k, g-p′ cusps are H-M. It

has no o-p′ cusps [Fr05c, Prop. 3.12]. Number of
p cusps on H′

k �→ ∞.
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Uses a General Idea: Let B = {pppk}∞k=0 be a g-p′

cusp branch. Assume for each k ≥ k0, pppk braids to a

p cusp ppp′k with ramification index exactly divisible by

p. Then, FP1 allows, with k = k0 + u, inductively

braiding pppk to a sequence of cusps ppp′k(1), . . . , ppp′k(u)
with ppp′k(t) having ramification index exactly divisible

by pt, u = 1, . . . , t.
From their ramification indices over j = ∞, these

give u different p cusps at level k0 + u.
For Ni(Gk(A5),C34) take k0 = 1: ppp′k is produced as

the near H-M rep. associated to pppk [BFr02,Prop. 6.8].
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An examples of two braid orbits from lifting inv.

Example 4 (An and 3-cycles).For each pair (n, r)
with r ≥ n, there are exactly two braid orbits on

Ni(An,C3r). One contains a g-2′ representative and

the other is obstructed at level 0. Braid orbit reps

for n = r = 4:

ggg4,+ = ((1 3 4), (1 4 3), (1 2 3), (1 3 2)),
ggg4,− = ((1 2 3), (1 3 4), (1 2 4), (1 2 4)).
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Nonbraidable, isomorphic Mg̃gg

Suppose two extensions Mgggi
→ G, arise from

gggi ∈ Ni(G,C), i = 1, 2. Assume they are isomorphic.

Still might not be braidable.

The Nielsen class Ni(G1(A4),C±32) has six braid

orbits. Two extensions correspond to the two

H-M components called H+,β
1 , H+,β−1

1 . An outer

automorphism of G1(A4) takes ggg1 to ggg2, giving

elements in different braid orbits. These are H-

M components, so FP2 gives isomorphic extensions

Mgggi
→ pG̃, i = 1, 2 in distinct braid orbits.
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Part V. Generalizing Serre’s OIT and

the g-p′ conjecture

Stay with r = 4 to simplify notation.

1. Why you expect a PSCK for some number field K

only if you have a g-p′ cusp.
2. Generalize in (G,C, p) to allow many primes. Use

higher rank MTs: a group H (C are classes in H)

acting on either a free group or a lattice L, and

for all allowable p look at (L/pL ×sH,C, p).
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3. Decide when you can inductively find infinitely

many points corresponding to “complex

multiplication, ”(i.e. prediction of full Galois image

for the fiber over j0 ∈ U∞).
4. Where (when?) are the Hecke operators?

Topics (2) and (3) are in [Fr05c,§6], with extensive

examples comparing modular curvee to the general

case. My NSF proposal outline how topics (1) and

(4) work. These will be in my RIMS talk in October.

– Typeset by FoilTEX – 28



(Lots of evidence for) g-p′ Conjecture: Each PSCK

is defined by a cusp sequence called g-p′. Their

shifts often resemble sequences of width pk+1 cusps

on {X0(pk+1)}∞k=0; moduli interpretation generalizing

Tate elliptic curve.
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App. A2: A Formula for Spin-Lift Invariant

For g ∈ An of odd order, let w(g) be the sum of

(l2 − 1)/8 mod 2 over all disjoint cycle lengths l in

g (l �≡ ±1 mod 8 contribute).

Theorem 5 (Fried-Serre). If ϕ : X → P1 is in
Nielsen class Ni(An,C3n−1)abs, then deg(ϕ) = n,
X has genus 0, and s(ϕ) = (−1)n−1.

Generally, for any genus 0 Nielsen class of odd
order elements, and representing ggg = (g1, . . . , gr),
s(ggg) is constant, equal to (−1)

∑r
i=1 w(gi).
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Meaning: Let X̂ → P1
z be Galois closure of ϕ.

Then, s(ϕ) = 1 =⇒ ∃μ : Y → X̂ unramified, so

ϕ ◦ μ is Galois with group G ×An Spinn.
Exercise:Genus 0 assumption doesn’t apply to

ggg1 = ((1 2 3)(3), (1 4 5)(3)), or to

ggg2 = ((1 2 3)(3), (1 3 4), (1 4 5), (1 5 3)),
but you can easily compute s(gggi), i = 1, 2.
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App. B2: sh-incidence Matrix for (A4,C±32)
Goal:There are two components H̄±. Want their

branch cycle description (γ±
0 , γ±

1 , γ±
∞) as j-line covers.

Let O be all the reduced Nielsen class reps. in a

cusp orbit. Then (O)sh is collection of shifts of all

elements in O. If O1, . . . , Ot is a complete list of

cusp sets, then the (i, j) entry of the sh-incidence

matrix is |Oi ∩ (Oj)sh|.
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Listing cusp sets and blocks for (A4,C±32)
There are six easily computed cusp sets on

(A4,C±32)in,rd listed in [Fr05c,§6.3.1]:

• O1,1: cusp orbit of an H-M rep. g1,1 with 3rd and

4th entries ((1 3 4), (4 3 1));
• O3,1: cusp orbit of another H-M rep., (g1,1)q3;
• O1,4: cusp orbit of

g1,4 = ((1 2 3), (1 2 4), (1 2 3), (1 2 4)),

• O1,5: cusp orbit of (g1,4)q3, etc.
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As cusp orbits and sh of them are easy to compute,

easily get the 6 × 6 sh-incidence matrix blocks.

Orbit O1,1 O1,3 O3,1

O1,1 1 1 2

O1,3 1 0 1

O3,1 2 1 0

Orbit O1,4 O3,4 O3,5

O1,4 2 1 1

O3,4 1 0 0

O3,5 1 0 0
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Lemma 6. In general, sh-incidence matrix is same
as matrix from replacing sh = γ1 by γ0. Only
possible elements fixed by either lie in γ∞ orbits
O with |O ∩ (O)sh �= 0|.

On Ni+0 (resp. Ni−0 ), γ1 fixes 1 (resp. no)
element(s), while γ0 fixes none.
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