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Dihedral Analogy
Modular curve towers for a prime p are to MTs

for p as the dihedral group D, is to all p-perfect
finite groups. For p-perfect GG, p’ conjugacy classes
C ={Cy,...,C,}, have string of tower levels:

(TS) NN H}Cﬂ—f_rld N H]icﬂ,rd e — IP) \{Oo}def U
With r = 4, use these inputs for conclu5|ons.

1. Frattini Principles, FP1 and FP2.
2. Notions of j-line covers, Riemann-Hurwitz,

reduced Hurwitz spaces.
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Known MT Properties for r =4

o (Proven) P; covers: All levels are curves, moduli
spaces covering the j-line P; ramified at three (j =
0,1,00) points, and upper half plane quotients by
a finite index subgroup of PSLy(Z).

e (Nearly Proven) Main Conj (K number field): Let

(TS) o= oy — H = — B!

be a projective sequence of (compactified)
components on (TS) over K (a PSCg). Then,
excluding cusps , level £ >> 0 has no K points.
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Part |. Types of Cusps on curve components
Absolute Nielsen classes Ni(G},, C)2"s :

{g = (gl, e ,94) c C mod NSn(Gk)}

(for inner classes mod G}) with

oConGl1 Generation: <gl,gg,gg,g4> Go:
e Cond? — Product-one: ¢1g20g3q4 =

Twist action of Hy = (q1, ¢, q3) generators on

g € Ni(Gy, C)azzf Ex.: G2 9 (91, 929395 5 G2, G4)-
Cusps: Cuy = (q1q5 ", (¢19293)?, g2) orbits.

Let Q" = (qiq5 ', (q1q293)?).
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Why M, ¥ H,/Q" is PSLy(2)!

® (o — Yoo
e ¢q1¢2q3 (shift) — ;1 (order 2).
® g1go — 7 has order 3, from braid relation

4192q1 = @2q1g2 mod Cuy and Hurwitz relation
l = q192939392q1:

= (4192914919291 = 414291424142 = (C]16]2)3-
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Example of computing component genera
From a PSCg, in (CS), what to compute:

e Nature of cusps and their widths (length of Cuy

mod Q" orbits).
e How they fall in M, orbits and of what genera

(Riemann-Hurwitz).
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Modular curves X,(p*™1) [Fr05d, Talk #1]

Use b & (_01 [1)) € D k+1. So,
g € Niy & (by,...,by) € (z/p"tH)"
11

0 1
b1:Oand bg—b3—|—b4:O.

Conjugate by power of ( ) to assume
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Normalizing: Have by — b3 = ap” u > 0,

a € 2/p"™"" and (a,p) = 1.
a0
0 1
Allows further conjugation by

For Ni*™, conjugate by ( ) soa=1.

H, = {a = 1+bp"™ % c z/p"* mod p*“,b € z/p*}.

Take ¢ = by, b3 = ¢ — p" (u is a parameter).
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Dihedral group cusp computing cont.
Compute : (g)qgs < (ba, b3) = (c+Lp*, c+((£—1)p").

For u = 0: (bg,b3) = (¢,c — 1) has g9 orbit of width
p"™1 containing ¢ = gy.v = (0,0,1,1) (unique
Harbater-Mumford rep.).

Otherwise, (g9) = D1 requires (c,p) = 1.
Conjugate by H, to assume ¢ € Z/p"T17% s
p',u > 0: Width = |residues mod p*™1~* differing
by multiplies of p“|.
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Conclude: o(p**™17%) Nielsen class elements fall in
Cuy orbits of width p* 172 (resp. 1) if k+1—2u > 0
(resp. K4+ 1 —2u < 0).

Other extreme, u = k + 1: (b, b3) = (1,1), the
shift of an H-M rep. (orbit width 1).
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Part |I: Compare modular curve cusps with cusp
types on all MT levels [FrO5c, §3.2]

When r = 4, MT levels ( £ > 0) are upper half-
plane quotients covering the classical j-line. Rarely
modular curves.

With » = 4, g € Ni(G, C)in, denote:

(92, 93) = Ha3(g) and (g1, 94) = H14(9)-

— Typeset by Foil TEX — 11



For u # k + 1, all g define p cusps: plord(g2g3),
and p divides all inner space cusp widths.

For u =k +1: (0,¢,¢,0) = (b, 05,65, b)) (shift
of H-M case) has inner space cusp width (= 1)
prime to p. Generalizing property, (g)Cuy is a g-p’
cusp:Hs 3(g) and Hy 4(g) are p’ groups:

Finally: o(nly)-p" is the phrase for those cusps
neither p nor g-p’. Modular curves have none.
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Apply R-H to M'T' components
Ni' is a M, orbit on a reduced Nielsen class
Ni(G,C)2s/Q" (or Ni(G,C)™/Q"). Denote action

of (70,71, 720) (p- 9) on Ni’ by (v,71,7%): Branch
cycles for a cover H' — P},

R-H gives genus, g

2(deg(H'/B})+g'—1) =ind(v) +ind(y7) +ind(y5).
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To compute genera of components in a MT
answer these questions

e What are the components H), of H

(M, orbits Nij, on Nii%)?
e What are the cusp widths (ramification orders over

co; orbit lengths of v/ on Ni)?
e \What points ramify in each component over elliptic

points 7 = 0 or 1; length 3 (resp. 2) orbits of
(resp. v;) on Ni}?
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Part lll. Where is the Main Conjecture with r = 47

Let B' = {H}}?2, be an infinite component
branch. Possible Main Conj. contradictions:

1. gH;:OforaIIO§k<oo
(B’ has genus 0; gp/ consists of 0's); or

2. For k large, I = 1
(B’ has genus 1; almost all of gg/ is 1's).
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Reduction to the case the center of G is p’: Then,
FP1 — Every point at level £ + 1 over a p cusp
at level k is ramified (of order p).

Example use: From R-H, for k£ >> 0, (2) implies
1., — Hj, doesn’t ramify. So, FP1 says:

For no k does H). have a p cusp.
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Possible exceptional cases! [FrO5c, §5]
Assume p, € H) is a p cusp (some k). Denote:
deg(H).,, /Hy) = viand [p),, €, ,, overp)| —uy.
Theorem 1. The Main Conj. is true unless for
k>>0, vy =p, u, =1 and H_ /H}, is equivalent
(as a cover over K ) to either:

1. (P°"M) a degree p polynomial map; or
2. (R*"M) a degree p rational function ramified
precisely over two K conjugate points.
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Corollary 2. If neither (P°YM) nor (R*"M) hold

for the component branch B', then high levels of
B’ have no K points.

For B’ with full elliptic ramification (includes

when B’ has fine reduced moduli) for k >> 0, the
Main Conj. holds unless (R°"M) holds.
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Part IV. What happens in real cases!

e Main point to finish Main Conjecture for r = 4:
Find p cusps at high levels.

e If the limsup of deg(H} ,/H}) is not p, one p
cusp guarantees the p cusp count (at level k) is
unbounded as k£ — 0.
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The case (As, Cs4,p = 2) (four 3-cycles):

o Level 0: H(As, Cs4)™™ has one component, and

no p (=2) cusps.
e Apply lift invariant for Spin, — As; (App2):

Shows all level 1 comps. have p (= 2) cusps
BFr02,Cor. 8.3] (Fr-Se formula).

e Level 1 [BFr02, Prop. 9.14]: Two components
(M, orbits, Ni; ), distinguished by embedding
G1(As) < Ay giving Sspin,,(g) = £1 depending
on g < Nil,:l:-
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On compactification H of H,(G1(As), Cga)™rd:
e Contains all H-M cusps (FP2 = ,G is a limit
group for a comp. branch over it).

e Has genus 12 and degree 16 over the unique
component of H(As, Cga)0rd,

e Has all the real (and so all the Q) points at level 1
[BFr02, §8.6]. On its compactification H., H. (R)
Is connected. All except the shift of the H-M cusps
are 2 cusps.
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On compactification H_ of H_(G1(As), Cga) ™

e Has genus 9, but no real points.

e Because of the lifting invariant, nothing above it
at level 2: 5G(As5) (the whole 2-Frattini cover of
As) is not a limit group.
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Higher (A5, C54,p = 2) levels: modular curve-like
cusp properties

Let {H}.}7°, be an H-M comp. branch (FP2).

Proposition 3. On all H),, g-p' cusps are H-M. It
has no o-p’ cusps [FrO5c, Prop. 3.12]. Number of
p cusps on Hj, — oo.
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Uses a General Idea: Let B = {p;};>, be a g-p’
cusp branch. Assume for each k > kg, p;. braids to a
p cusp p;. with ramification index exactly divisible by
p. Then, FP1 allows, with k& = ky + u, inductively
braiding p, to a sequence of cusps p).(1),...,p.(u)
with p.(f) having ramification index exactly divisible
by pt, u=1,...,¢t.

From their ramification indices over 3 = oo, these

give u different p cusps at level ky + u.
For Ni(G(As5), Cs4) take kg = 1: p} is produced as

the near H-M rep. associated to p, [BFr02,Prop. 6.8].
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A,, examples of two braid orbits from lifting inv.

Example 4 (A, and 3-cycles). For each pair (n, )
with » > n, there are exactly two braid orbits on
Ni(A,, Csr). One contains a g-2' representative and
the other is obstructed at level 0. Braid orbit reps
forn =r = 4:

94+ = ((134),(143
94 = ((123)

—
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N N
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o DN
=~
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—_ =
DO Qo
=~ DN
N——"
SN— "
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Nonbraidable, isomorphic Mg
Suppose two extensions M, — G, arise from

g, € Ni(G,C), 7 =1,2. Assume they are isomorphic.
Still might not be braidable.

The Nielsen class Ni(G1(A4), C_32) has six braid
orbits.  Two extensions correspond to the two
H-M components called Hi’ﬂ, Hf’ﬁ_l. An outer
automorphism of G1(A4) takes g, to g,, giving
elements in different braid orbits. These are H-
M components, so FP2 gives isomorphic extensions
M, — ,G, i =1,2 in distinct braid orbits.
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Part V. Generalizing Serre's OIT and
the g-p’ conjecture

Stay with r = 4 to simplify notation.

1. Why you expect a PSCg for some number field K
only if you have a g-p’ cusp.

2. Generalize in (G, C,p) to allow many primes. Use
higher rank MTs: a group H (C are classes in H)
acting on either a free group or a lattice L, and
for all allowable p look at (L/pL x*H,C,p).

— Typeset by Foil TEX — 27



3. Decide when you can inductively find infinitely
many points corresponding to = “complex
multiplication, " (i.e. prediction of full Galois image

for the fiber over jy € Uy).
4. Where (when?) are the Hecke operators?

Topics (2) and (3) are in [Fr05¢,§6], with extensive
examples comparing modular curvee to the general
case. My NSF proposal outline how topics (1) and
(4) work. These will be in my RIMS talk in October.
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(Lots of evidence for) g-p" Conjecture: Each PSCg
is defined by a cusp sequence called g-p’. Their
shifts often resemble sequences of width p*t! cusps
on { Xo(p"t1)}2; moduli interpretation generalizing
Tate elliptic curve.
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App. As: A Formula for Spin-Lift Invariant

For g € A,, of odd order, let w(g) be the sum of
(I* —1)/8 mod 2 over all disjoint cycle lengths [ in
g (I #+1 mod 8 contribute).

Theorem 5 (Fried-Serre).If ¢ : X — P! is in
Nielsen class Ni(A,, C3n-1)*, then deg(yp) = n,

X has genus 0, and s(p) = (—1)""1.
Generally, for any genus 0 Nielsen class of odd

order elements, and representing ¢ = (g1,...,9r),
s(g) is constant, equal to (—1)2i=12(9),
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Meaning: Let X — P! be Galois closure of ¢.
Then, s(p) =1 = du : Y — X unramified, so

@ o is Galois with group G x 4, Spin,,.
Exercise:Genus 0 assumption doesn't apply to

g, = ((123)®,(145)%), or to

9o = ((1 23)(3)7 (1 34)7 (145)7 (1 53))7

but you can easily compute s(g,), i = 1, 2.
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App. Bs: sh-incidence Matrix for (A4, C_52)

Goal: There are two components Hy. Want their

branch cycle description (Y5, Vi, 7<) as j-line covers.

Let O be all the reduced Nielsen class reps. in a
cusp orbit. Then (O)sh is collection of shifts of all
elements in O. If O1,...,0; is a complete list of
cusp sets, then the (7,7) entry of the sh-incidence
matrix Is ‘Oz fa (Oj)Sh‘
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Listing cusp sets and blocks for (A4, C_52)

There are six easlly computed cusp sets on
(Ay, Cog2)™ ™ listed in [Fr05c,§6.3.1]:

e (J1: cusp orbit of an H-M rep. ¢;; with 3rd and
4th entries ((134),(431));

e (J;51: cusp orbit of another H-M rep., (91.1)gs;
e (1 4: cusp orbit of
e 05 cusp orbit of (g1.4)gs, etc.

— Typeset by Foil TEX — 33



As cusp orbits and sh of them are easy to compute,

easily get the 6 x 6 sh-incidence matrix blocks.
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Orbit 01’1 0173 0371
O 1 1 2
Os| 1 0 1
0, | 2 1 0
Orbit 01’4 0374 0375
O | 2 1 1
03,4 1 0 0
05| 1 0 0
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Lemma 6. In general, sh-incidence matrix is same
as matrix from replacing sh = ~; by 5. Only
possible elements fized by either lie in v, orbits
O with |O N (O)sh # 0.

On Nig (resp. Niy), ™ fizes 1 (resp. no)
element(s), while vy fixes none.
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